Optical Detection of Paraoxon Using Single-Walled Carbon Nanotube Films with Attached Organophosphorus Hydrolase-Expressed Escherichia coli

نویسندگان

  • Intae Kim
  • Geon Hwee Kim
  • Chang Sup Kim
  • Hyung Joon Cha
  • Geunbae Lim
چکیده

In whole-cell based biosensors, spectrophotometry is one of the most commonly used methods for detecting organophosphates due to its simplicity and reliability. The sensor performance is directly affected by the cell immobilization method because it determines the amount of cells, the mass transfer rate, and the stability. In this study, we demonstrated that our previously-reported microbe immobilization method, a microbe-attached single-walled carbon nanotube film, can be applied to whole-cell-based organophosphate sensors. This method has many advantages over other whole-cell organophosphate sensors, including high specific activity, quick cell immobilization, and excellent stability. A device with circular electrodes was fabricated for an enlarged cell-immobilization area. Escherichia coli expressing organophosphorus hydrolase in the periplasmic space and single-walled carbon nanotubes were attached to the device by our method. Paraoxon was hydrolyzed using this device, and detected by measuring the concentration of the enzymatic reaction product, p-nitrophenol. The specific activity of our device was calculated, and was shown to be over 2.5 times that reported previously for other whole-cell organophosphate sensors. Thus, this method for generation of whole-cell-based OP biosensors might be optimal, as it overcomes many of the caveats that prevent the widespread use of other such devices.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced stability of enzyme organophosphate hydrolase interfaced on the carbon nanotubes.

In this paper we demonstrate that SWNTs and a covalent immobilization strategy enable very sensitive sensors with excellent long term stability. Organophosphorus hydrolase (OPH) functionalized single and multi-walled carbon nanotube (CNT) conjugates were exploited for direct amperometric detection of paraoxon, a model organophosphate. The catalytic hydrolysis of paraoxon produces equimoles of p...

متن کامل

Biosensor for direct determination of organophosphate nerve agents using recombinant Escherichia coli with surface-expressed organophosphorus hydrolase. 2. Fiber-optic microbial biosensor.

A fiber-optic microbial biosensor suitable for direct measurement of organophosphate nerve agents was developed. The unique features of this novel microbial biosensor were the recombinant Escherichia coli cells expressing the enzyme organophosphorus hydrolase on the cell surface and the optical detection of the products of enzyme-catalyzed organophosphate hydrolysis. The use of cells with the m...

متن کامل

Enzyme Entrapment in Silica Nanoparticles: Mediated by Single Walled Carbon Nanotubes-lysozyme for Biosensor Applications

Introduction Silica compounds are among the most extensively studied materials, especially those prepared by the sol−gel process [13]. A wide variety of proteins can catalyze the precipitation of silica and become encapsulated as the silica matrix forms. The reaction provides an efficient method for enzyme immobilization and provides significant mechanical stability to resulting silica matrix. ...

متن کامل

An organophosphate sensor based on photo-crosslinked hydrogel-entrapped E. coli.

This paper describes a whole cell sensor using E. coli entrapped within photocrosslinked hydrogel beads. Hydrogel beads containing organophosphorus hydrolase (OPH)-expressed E. coli were prepared by adding a hydrogel precursor solution containing the E. coli to an oil phase using a precision syringe pump, forming droplets, and photopolymerizing them. The beads showed good monodispersity with an...

متن کامل

Detachment of vertically aligned single-walled carbon nanotube films from substrates and their re-attachment to arbitrary surfaces

Department of Mechanical Engineering, The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan Received 31 December 2005; in final form 20 February 2006 Abstract A method for detachment of vertically aligned single-walled carbon nanotube (VA-SWNT) films from substrates simply using hot water has been developed. The VA-SWNT films were peeled off spontaneously by submersing the subst...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2015